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ABSTRACT

We present a novel approach to query-by-example keyword spotting
(KWS) using a long short-term memory (LSTM) recurrent neural
network-based feature extractor. In our approach, we represent each
keyword using a fixed-length feature vector obtained by running the
keyword audio through a word-based LSTM acoustic model. We
use the activations prior to the softmax layer of the LSTM as our
keyword-vector. At runtime, we detect the keyword by extracting
the same feature vector from a sliding window and computing a sim-
ple similarity score between this test vector and the keyword vector.
With clean speech, we achieve 86% relative false rejection rate re-
duction at 0.5% false alarm rate when compared to a competitive
phoneme posteriorgram with dynamic time warping KWS system,
while the reduction in the presence of babble noise is 67%. Our sys-
tem has a small memory footprint, low computational cost, and high
precision, making it suitable for on-device applications.

1. INTRODUCTION

With the growing popularity of voice control in mobile devices, the
need for high performance, small footprint, and low computational
cost keyword spotting (KWS) methods is becoming increasingly im-
portant [1]. In such applications, KWS usually serves as a frontier
of voice search: it listens to the audio continuously and initiates the
voice search if a specific keyword is detected, thus providing a fully
hands-free experience when interacting with devices.

A common use is to have a pre-defined keyword to activate de-
vices. For example, Google’s voice search [2] uses the phrase “Okay
Google” to initiate the search interface and Apple’s conversational
assistant Siri features the keyword sequence “Hey Siri”. However,
this general phrase makes the experience less personal, and usually
requires additional speaker identification if the user does not want
others to easily activate their device. In this work we seek a keyword
spotting method that allows users to define their own keyword; for
example, a user may select a keyword by saying the word or phrase
a few times during enrollment. After enrollment, the user-specified
keyword can be used to activate the device.

We are interested in small memory footprint and low compu-
tational cost solutions, suitable for on-device applications. While
KWS is an active research area, most techniques are not suitable with
our constraints. A common KWS approach is the Keyword/Filler
Hidden Markov Model (HMM) [3, 4, 5, 6, 7]. It first builds a special
decoding graph that contains both keywords and filler words, and
then uses Viterbi decoding to determine the best path through the
graph. This requires prior knowledge of the keywords, which is not
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appropriate for our problem. Another area of research relies on using
large vocabulary continuous speech recognition (LVCSR) systems to
decode the audio into lattices or confusion networks, and search the
keywords from there [8, 9, 10]. The keywords, however, are only
limited to the words that are already defined in the LVCSR vocab-
ulary. While effort has been made to make such systems keyword-
independent [11, 12, 13, 14], there is usually a performance degra-
dation when the keywords are out of vocabulary. In addition, these
approaches are relatively expensive because of the LVCSR system.

Given our goal of detecting user-specified keywords, query-by-
example (QbyE) is the most appropriate KWS technique. QbyE
methods usually take several examples of the keywords as templates,
and compare the test audio segment against the templates to make
detection decisions. In [15] example keywords are decoded with
an LVCSR system to get their lattice representation as templates.
This is computationally expensive since the LVCSR system involves
speaker adaptation, discriminative features and model transforma-
tions [16]. In [17] graph-based method is proposed to embed audio
segments into a fixed-dimensional space, but dynamic time warp-
ing (DTW) is performed between the test audio segment and all the
training segments in order to compute the embedding, which can be
slow given large number of training segments. In [18, 19], Gaussian
or phoneme posteriorgrams are generated as templates from example
keywords, and DTW is used to compare the templates. Though this
type of DTW-based methods have well-known inadequacies [17], it
is the most appropriate KWS baseline for our application.

Given the constraints of our problem and the limitations of pre-
vious QbyE approaches, we propose a novel LSTM-based feature
extractor. In our approach, first an LSTM is trained with whole
word output targets. Next, for each audio segment, a fixed-length
representation of the audio is created by taking the activations from
the last hidden layer of the LSTM and stacking them over a fixed
number of frames. This embeds audio segments of different length
into a fixed-dimensional space, therefore vector distance can be used
for similarity measurement. Our method only requires a forward
pass computation of the neural network, followed by a vector dis-
tance computation, and therefore is more efficient than [15] where
an LVCSR is involved and [17] where multiple DTW computations
are necessary. It also requires less computation than [18, 19] since
vector distance is used instead of DTW.

To understand the behavior of our proposed LSTM KWS sys-
tem, we first conduct experiments on a clean enrollment and eval-
uation set. We find that the LSTM KWS system reduces the false
rejection rate by 86% relatively at 0.5% false alarm rate, when com-
pared to the DTW KWS system. Next, we explore its behavior at the
presence of noise. We add 10 dB babble noise to the evaluation set,
and achieve 67% relative false rejection rate reduction at the same
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false alarm rate. We further add 10 dB cafe noise to the enrollment
set, and the reduction is 37%. Our proposed system is consistently
better than the standard DTW KWS system in various environments.

2. LSTM FEATURE EXTRACTOR SYSTEM

The general idea of our proposed system is to embed audio segments
of varying lengths into a fixed-dimensional representation. Given the
success of deep learning [20], and the power of LSTMs for sequence
modeling [21], we choose an LSTM to learn this emdedding. The
LSTM is attractive because the state of the LSTM can encode infor-
mation about past history, and intuitively after processing a complete
audio segment, this LSTM state encodes information about the com-
plete sequence. This idea was motivated by face verification work in
[22], with the key difference in our work being that we use the LSTM
state to embed a fixed-length representation of a variable length input
sequence, as opposed to having a fixed-length input representation
and thus using a convolutional neural network.

2.1. Feature Extraction

To reduce computation, we use a voice-activity detection system and
only run the KWS algorithm in voice regions. The voice-activity de-
tector, described in [23], uses 13-dimensional PLP features along
with their deltas and double-deltas as input to a 30-component diag-
onal covariance GMM-trained system, which generates speech and
non-speech posteriors at every frame. This is followed by a hand-
tuned state machine, which performs temporal smoothing by identi-
fying regions where speech posteriors exceed a threshold.

For the speech regions, we generate 40-dimensional log-
filterbank energies computed every 10 ms over a window of 25
ms. For the deep neural network (DNN)-based system, contiguous
frames are stacked to add sufficient left and right context. The input
window is asymmetric since each future frame adds 10 ms of latency
to the system. We use 5 future frames and 10 past frames, to provide
the best trade-off between accuracy, latency, and computation [24].
For the LSTM-based system, no frames are stacked.

2.2. Long Short-Term Memory

Fig. 1. LSTM architecture
Long short-term memory (LSTM) is a type of recurrent neural

network (RNN) used to model long-range dependencies [21]. RNNs
are used for a variety of sequence-labeling tasks. Specifically, given
an input sequence x = {x1, . . . , xT }, an RNN computes a sequence
of hidden vectors h = {h1, . . . , hT } and outputs y = {y1, . . . , yT }
for all time steps {1, . . . , T}. An LSTM uses special memory cells
to model the temporal sequence, which allows it to more effectively
exploit long-range context than an RNN.

In our work, we train a 2-layer LSTM, as shown in Figure 1.
The network has 15k output targets, representing whole word units.
We exclude the evaluation keywords from the 15k output targets to
make the feature extractor independent of the test keywords.

2.3. LSTM Feature Extractor

After training the LSTM, given an audio segment, we use the LSTM
to determine a fixed-dimensional feature vector to represent the au-
dio signal. Our fixed length representation is created by removing
the softmax layer and using the hidden units from the 2nd LSTM
layer. More specifically, given an acoustic feature x with T frames,
the hidden units from the second layer of the LSTM are given as
h2 = {h2

1, . . . , h
2
T }. Here h2

i ∈ <n, where n represents the number
of LSTM cells. As each h2

i ∈ h2 encodes information up to time i,
there is no need to use all state vectors h2. We create a fixed-length
representation f by choosing the last k state vectors, as denoted by

f = {h2
T−k+1, . . . , h

2
T } (1)

The parameter k can be estimated from the enrollment tem-
plates. In our experiments, we choose k to be the averaged number
of frames of all the templates as we want to encode as much infor-
mation as possible. Zeros are padded in front of f if the segment
length T is smaller than the desired template length k.

2.4. LSTM KWS

Now that we have described how to create a fixed-length represen-
tation from an audio segment, in this section we describe the enroll-
ment and verification phases of our LSTM KWS system, as illus-
trated in Figure 2. In the enrollment phase, an utterance is spoken
three times. For each utterance, the activations from the last hidden
layer of the LSTM are calculated per frame, and the last k activa-
tions are used to create a fixed feature vector f . Note that since we
have three enrollment templates, we can keep all the three as sepa-
rate templates, or average them into one single vector. We will show
in our experiments of how template averaging impacts performance.

At runtime, another LSTM feature vector is generated in the
same way from a sliding window, and Cosine distance is used to
measure the similarity between the keyword template(s) and the slid-
ing window. Decisions are made based on the similarity score.

Fig. 2. Framework of the LSTM KWS system.

3. DTW BASELINE SYSTEM

DTW QbyE systems usually consist of two steps. First, features are
extracted at the frame level [17, 18, 19]. Second, DTW is performed
to compare the feature matrix of the templates and the test segment.
A confidence score is then computed from the DTW alignment cost.

We use phoneme posteriorgram features in our implementation.
Specifically, we label the training data by taking the forced-aligned
14,336 context-dependent (CD) state labels, and remapping this to
a set of 43 phonemes, including the silence phone. We then train a
neural network (i.e., DNN, LSTM) with 43 phoneme outputs. Af-
ter training, each input frame of the template and test segments is
converted to a posteriorgram by passing this frame through the net-
work. Another way of generating phoneme posteriorgrams is to train
a network to predict all 14,336 CD states, and then map them to
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43 phonemes when computing the posteriorgrams. However, this
greatly increases the number of model parameters due to the large
output layer.

A full picture of the baseline DTW KWS system is shown in
Figure 3. In the enrollment phase, log filterbank energy features are
extracted at the frame level for the three keyword examples, which
are then fed to the neural network to generate keyword phoneme
posteriorgrams. In the runtime phase, sliding window phoneme pos-
teriorgrams are computed in the same way, and DTW is performed
to compare the sliding window posteriorgrams and the keyword pos-
teriorgrams. Detection decisions are then made based on the DTW
alignment scores.

Fig. 3. Framework of the baseline DTW KWS system.

4. TEMPLATE AVERAGING

It has been shown in [18] that increasing the number of enrollment
templates usually leads to performance improvements. In our work,
we use three enrollment templates.

There are various techniques to perform evaluation with a test
utterance given multiple enrollment templates. For example, in
[18], the test audio is compared against each of the enrollment tem-
plates, generating one score for each template. These scores are
then merged into one final score for decision making. Evaluating
against three templates also increases the computational cost, which
is not favored by on-device applications. Therefore, we propose to
combine multiple templates into a single template for scoring.

Fig. 4. Example of template averaging.

Figure 4 shows how we combine templates. We use two tem-
plates in the figure for simplicity, where T1 is the first template, and
T2 is the second template. We first align the second template T2 to
the first template T1. In the DTW KWS system, since the templates
T1 and T2 have different length, we use DTW to align them. Figure 4
shows the aligned frames in a box. In the LSTM KWS system, how-
ever, templates are fixed length, so we align them by their dimen-
sionality index. Once frames are aligned, we compute the combined
frame by averaging them. For example, f ′3 = (f1,3+f2,3+f2,4)/3.
The combined template T ′ will be used as the only template at run-
time. If more templates are available, we always combine the new
template with the previous combined one.

The proposed template averaging method relies heavily on the
quality of the first template. In our experiments we ignore this effect
and simply choose the first template randomly. Another option is to
choose the longest template as the first one, as proposed in [25].

5. EXPERIMENTAL SETUP

5.1. Keywords for Evaluation

Table 1 lists keywords used in our experiments. Our test-set com-
bines anonymized voice search queries as negative examples, and
utterances including these keywords as positive examples.

Table 1. Keywords used in evaluation
hello genie hi galaxy
okay glass change watch face

open settings show agenda
show alarms show step count

We build one keyword model for each (speaker, keyword) com-
bination. It is out of scope for this paper to evaluate impostor perfor-
mance (same keyword, different speaker), so positive examples only
include utterances from that selected speaker and keyword.

Results are reported in the form of a modified version of re-
ceiver operating characteristic (ROC) curves [1], lower curves are
better. False alarm and false rejection counts are collected from all
the models to compute the false rejection rate at a certain false alarm
rate. The curve is obtained by sweeping the decision threshold.

5.2. Training

The neural network models are trained with 2,500 hours of speech
data, anonymized and manually transcribed. This dataset does not
have any assumption on the keywords that will be evaluated. All
models are trained using the cross-entropy criterion, with asyn-
chronous stochastic gradient descent (ASGD) [26].

The enrollment set contains 3 keyword examples for each
(speaker, keyword) combination. The evaluation set has 9k positive
examples for the 8 selected keywords, and 36k negative examples.
We use many more negative than positive examples to simulate the
expected application usage.

6. RESULTS

6.1. Initial Results

Figure 5 shows the performance of the proposed LSTM Feature Ex-
tractor and 2 DTW KWS systems. The LSTM Feature Extractor
system takes a 40-dimensional input feature and has 2 LSTM lay-
ers, each with 128 cells, resulting in 152k parameters. For the DTW
KWS systems, we compare obtaining posteriors from a DNN and
an LSTM. The LSTM-posterior model also takes a 40-dimensional
input feature, followed by 2 LSTM layers, each with 128 cells, and
43 phoneme output targets, resulting in 157k total parameters. The
DNN-posterior model has 5 layers, each with 128 hidden units, and
43 phoneme targets. It uses a 40-dimensional feature with 10 history
frames and 5 future frames, resulting in a DNN with 152k param-
eters. Those network topologies are mainly chosen to match each
other’s parameter size, and are not explicitly tuned for performance.

We first use clean enrollment and evaluation data. In Figure 5,
at roughly the same parameter size, the Phone LSTM + DTW system
outperforms the Phone DNN + DTW system. The proposed LSTM
Feat Extractor system improves significantly over both DTW sys-
tems. At 0.5% false alarm rate, which is the desired operating point
in our application, the LSTM Feat Extractor system yields 86% and
88% relative improvements respectively over the DTW systems.

We also explore the robustness of the proposed KWS approach
by adding 10 dB of babble noise to the evaluation set. Results in
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Fig. 5. LSTM feature extractor vs. baseline

Figure 5 show a performance degradation for all the systems due
to noise. However, the general story does not change: the Phone
LSTM + DTW (Babble) system is better than the Phone DNN + DTW
(Babble) system (a lot better in this noisy case), while the LSTM Feat
Extractor (Babble) system outperforms both of them.

6.2. Template Averaging

Figure 6 compares the performance with and without template aver-
aging. In this figure, the dashed curves are generated with template
averaging, i.e., all the three templates are averaged into one tem-
plate, and is used as the only template during runtime. The solid
curves are generated without template averaging. Figure 6 suggests
that template averaging does not degrade performance significantly.
This is good news for on-device applications since we can reduce the
runtime computation greatly (3x) without hurting the performance.

Fig. 6. Impact of template averaging

6.3. Whole Word Modeling

In Figure 7 we evaluate the importance of training the LSTM feature
extractor with whole word output targets. The Phone LSTM + DTW
(Babble) and Word LSTM Feat Extractor (Babble) curves are the
same curves from Figure 5. For the Phone LSTM Feat Extractor
(Babble) curve, we take the Phone LSTM model, remove the output
layer and treat it as a feature extractor for keyword spotting. The
performance of this system is much worse than the original LSTM
feature extractor trained with whole word output targets, and it is
also worse than the Phone LSTM + DTW system where we take the
LSTM from. This implies that whole word modeling is critical in
our LSTM KWS system.

6.4. Noisy Enrollment

Finally, we show the robustness of our proposed KWS approach
when adding different noise sources at enrollment and evaluation

Fig. 7. Impact of whole word modeling

time. To simulate this, we add 10 dB of babble noise to the clean
evaluation data, and also add a different 10 dB cafe noise to the
clean enrollment data, so that the keyword models built from the
noisy enrollment data are corrupted. As shown in Figure 8, the per-
formance degrades dramatically for all the systems. For example,
at 0.5% (0.005) false alarm rate, the two DTW KWS systems both
give 99.8% false rejection, basically rejecting everything, while the
LSTM KWS system gives a false rejection rate of 63%.

Fig. 8. Impact of noisy enrollment

7. CONCLUSION AND FUTURE WORK

We presented a LSTM feature extractor for the QbyE task in KWS.
Experimental results showed that our method outperformed the stan-
dard phoneme posteriorgram + DTW system. We also proposed a
template averaging technique, which allows us to combine multiple
templates into one without performance degradation on our dataset.
This technique is especially important for on-device applications
since it can reduce the runtime computation cost. We tested the
proposed QbyE system along with the baseline systems on various
enrollment/evaluation conditions, and showed that it is important to
have a clean enrollment environment for QbyE tasks.

As a future direction, we will look into ways to further improve
our LSTM feature extractor. For example, dimensionality reduc-
tion can be applied to reduce the stacked feature vector. We will
also compare our method with the latest DTW QbyE systems, as
described in [25, 27].
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